
EA303 WIND TUNNEL

EXPERIMENT II

TWO DIMENSIONAL

WING PRESSURE DISTRIBUTION AND WAKE SURVEY

I. Purpose

1. To observe the characteristics of the pressure distribution on a two dimensional
wing section at various angles of attack including angles of attack above the
stall angle of attack.

2. To obtain experimental sectional lift and drag coefficients versus angles of at-
tack, Cl vs α and Cd vs α, and to compare them with those provided by NACA
for similar two dimensional wing sections.

3. To observe the characteristics of the wake behind a two-dimensional airfoil, e.g.,
the local dynamic pressure, the width of the wake, its location, how the wake
changes with angle of attack, etc. To observe the effects of angle of attack on
the surface pressure distribution around the airfoil.

4. To apply the linear momentum theorem to an arbitrary volume enclosing the
airflow over the airfoil and its wake, and to determine the sectional drag coeffi-
cient of the airfoil in a real fluid without any direct measurements on the model,
i.e., without a balance or surface pressure measurement.

II. References

1. White, F. M., Fluid Mechanics, McGraw-Hill, 2nd edition, 1986, pp. 132–142.

2. Kuethe and Chow, Foundations of Aerodynamics, Wiley 1986, pp. 64–70.

3. Abbott, Ira H. and Von Doenhoff, Albert, E, Theory of Wing Sections, Dover
1959, pp. 1–30, 124–187.

4. Rae and Pope, Low-Speed Wind Tunnel Testing, Wiley 1984, pp. 213–222.

III. Introduction

A two-dimensional wing is one whose shape, flow pattern, and sectional properties
do not vary in a direction normal to the plane of the flow. Theoretically, this two
dimensional flow exists only on a wing of infinite aspect ratio (AR = ∞), i.e., when
the ratio of the wing span divided by the mean aerodynamic chord is infinite. In
practice, it is approached on the interior portion of an extremely long wing or a wing
mounted wall-to-wall in a wind tunnel test section. The exterior portions of the wing
are excluded to avoid tip effects — caused by the trailing tip vortices which result
from the three dimensional flow over a finite wing — and wall boundary layer effects.
Knowledge of two-dimensional airfoil properties is extremely important because they
are an integral part of the analysis of the three dimensional flow characteristics over
a finite wing.
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2 Experiment II — Two Dimensional Wing Pressure Distribution and Wake Survey

The two dimensional drag which occurs in a real fluid is called profile drag. It is
composed of pressure (or form) drag and skin friction (or viscous) drag. Form drag is
due mainly to pressure differences between the forward and aft portions of the airfoil
(body) caused by boundary layer separation. Skin friction (or viscous) drag is caused
by shear stresses on the surface of the body.

The form (pressure) drag coefficient can be determined by integrating the stream-
wise components of the surface pressure coefficients calculated using data obtained
from static pressure taps located around the circumference of the airfoil (body). The
profile drag coefficient includes viscous effects. These effects are not included in the
form (pressure) drag coefficient.

The profile drag coefficient of a two dimensional airfoil is obtained by applying
the linear momentum theorem to a control volume enclosing both the airflow over
the airfoil and its wake. The net momentum deficit in the streamwise direction in
the wake compared to the momentum in the free stream ahead of the airfoil gives the
profile drag of the airfoil. The skin friction drag may be inferred from the calculated
results for form and profile drags, i.e.

skin friction drag = profile drag− form drag

IV. Theory

Application of Linear Momentum Theorem: Wake Survey

Newton’s second law applied to a homogeneous fluid enclosed in an arbitrary control
volume as shown in Fig. 2–1 provides the basis for the linear momentum theorem.

Control volume

Control surface

dS

dV

n
V

Figure 2–1. Sketch of a fluid element in a control volume.
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Experiment II — Two Dimensional Wing Pressure Distribution and Wake Survey 3

According to the law of conservation of momentum, the net rate of change of the
momentum of the fluid crossing a control volume bounded by a control surface is
equal to the sum of all external forces acting on the control volume. This is expressed
as ∑

Fext =
∂

∂t

∫ ∫ ∫
CV

ρV̄ dv +
∫ ∫

CS

ρV̄ (V̄ .n̄)dS (1)

where ρ is the fluid density, V is the fluid velocity entering or leaving the control
surface (CS) depending on whether V.n is negative or positive and n is a local unit
outward normal vector to an element of area dS of the control surface.

∑
Fext is

the resultant of all surface forces (pressure and shear) and all body forces (gravity).
The linear momentum theorem is a statement of Eq. (1) which is an instantaneous
vector relation balancing the sum of the time rate of change of momentum enclosed
within the control volume and the net flux of momentum through the control surface
enclosing the control volume with the resultant of the external forces applied to the
control volume. Eq. (1) represents the linear momentum equation for a general three
dimensional unsteady compressible flow.

As an application of the linear momentum theorem, the momentum equation,
Eq. (1), is applied to a control volume enclosing a fluid flowing over a ceiling-to-floor
mounted constant section airfoil and its wake. Looking down at the test section from
above, the control volume (dashed lines) is bounded on the inside by the surface of
the airfoil, on the outside by streamlines equally distant from the tunnel walls and
outside the tunnel wall boundary layer and upstream and downstream lines normal
to the streamlines labeled 1 and 2 in Fig. 2–2.

Because of viscous effects, a wake of retarded flow exists behind the airfoil in
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V

Figure 2–2. Drag of an airfoil from wake measurements.

David F. Rogers 13:16 on 10/2/100



4 Experiment II — Two Dimensional Wing Pressure Distribution and Wake Survey

Fig. 2–2. In the wake region, the velocity is less than the upstream value and varies
across the test section, as illustrated by the profile at the right. Writing the x com-
ponent of the momentum equation, Eq. (1), we have

∑
Fextx =

∂

∂t

∫ ∫ ∫
CV

ρVxdv +
∫ ∫

CS

ρVxVndS (2)

where the subscript x indicates the streamwise component of a vector and Vn = V.n
is the normal component of the velocity vector at the control surface.

Now let us consider all the external forces on the control volume in the x direction,
i.e. ∑

Fextx = p1A1 − p2A2 + Fx (3)

where p1A1 and p2A2 are the pressure forces at the entrance and exit areas A1 and A2.
The entrance and exit areas are assumed equal. Fx is the x component of the resultant
force (due to viscous and pressure forces on the airfoil) exerted by the airfoil on the
fluid in the control volume. Fx is equal and opposite to the force exerted by the control
volume on the airfoil. This equal and opposite force is the aerodynamic drag on the
airfoil, D. Note that the gravity force has no component in the x direction. Because
the control surface is chosen outside the wall boundary layers, Eq. (3) excludes the
tunnel wall shear forces,

The choice of stations 1 and 2 is arbitrary. However, a judicious choice of their
locations eliminates the contribution of the pressure forces in Eq. (3). Station 1 can
be placed relatively far upstream in the test section where the pressure is uniform and
equal to the freestream static pressure (p1 = p∞). The location of station 2 should
be at a distance downstream from the airfoil trailing edge such that the pressure p2

is also equal to p1 = p∞. Measurements behind airfoils at low angles of attack (see
Kuethe and Chow, 1986, p. 67) show that if station 2 is placed at least 12% of the
airfoil chord behind the trailing edge, the pressure variation is small enough that
p2 = p1 = p∞. Eq. (3) then reduces to

∑
Fextx = Fx = −D (4)

which gives the drag force on the airfoil to within a few percent of its correct value.
Because the flow is steady, the first term on the right-hand side of Eq. (2) is zero.

Combining Eqs. (3) and (4), the momentum equation then reads

−D =
∫ ∫

CS

ρVxVndS (5)

Figure 1 shows that Vn = V.n is zero on the upper and lower control surfaces.
Equation (5) then reduces to

−D =
∫ ∫

CS1

ρ1V1(−V1)dS1 +
∫ ∫

CS2

ρ2V2(+V2)dS2 (6)
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Experiment II — Two Dimensional Wing Pressure Distribution and Wake Survey 5

and assuming that the flow is incompressible (ρ1 = ρ2 = ρ = const) we have

−D = ρ
∫ ∫

CS2

V 2
2 dS2 − ρ

∫ ∫
CS1

V 2
1 dS1 (7)

Using the continuity equation for one-dimensional steady incompressible flow, i.e.

V1dS1 = V2dS2 (8)

and making a change of variable in the second integral of Eq. (7), i.e.

dS1 =
V2

V1
dS2 (9)

the two integrals in Eq. (7) combine into one integral over CS2 to yield

−D = ρ
∫ ∫

CS2

(V 2
2 − V1V2)dS2 (10)

Introducing the nondimensional drag coefficient, with V1 = V∞, yields

Cd ≡ D

q∞S
=

D
1/2ρV2∞bc

=

ρ
∫ ∫
CS2

(V∞V2 − V2
2)dS2

1/2ρV2∞bc
(11)

where b is the wing span, c is the wing chord length, q∞ is the upstream dynamic
pressure, and S = bc is the wing area of the constant cross section. The surface
integral in Eq. (11) is transformed to a line integral by realizing that dS2 = bdy,
which yields

Cd = 2
∫ ymax/c

0

[
V2

V∞
−

(
V2

V∞

)2
]
d
(y

c

)
(12)

where y = 0 is the location of the lower wall, and ymax is that of the upper wall. In
terms of the normalized dynamic pressure at station 2, we equivalently have

Cd = 2
∫

wall

0

[(
q2

q∞

)1/2

− q2

q∞

]
d
(
y

c

)
≡ Cd0 (13)

This is the profile (pressure and viscous) drag coefficient of a two dimensional airfoil.
The quantities required for evaluation of Eq. (13) are usually obtained from a “rake”
composed of small pitot tubes spaced one to two tube diameters apart, with the pitot
tube orifice about one chord length ahead of the rake body. The pitot tubes are
individually connected to a multiple manometer. The dynamic pressure distribution
in a typical wake is shown in Fig. 2–3.

Because only the ratio q2/q∞ is required, the readings are independent of the
specific gravity of the manometer fluid. The constant readings of the outside tubes
indicate that they are out of the wake and hence may be used to determine q∞. In
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Figure 2–3. The wake as it appears on a multiple manometer.

practice, for low and moderate angles of attack, the rake is placed at 70% chord length
behind the trailing edge of the wing, assuming that the static pressure in the wake is

not far off from the freestream value p∞. A typical plot of
√

q2/q∞ − q2/q∞ versus
y/c is shown in Fig. 2–4.

According to Eq. (13), the profile drag coefficient is equal to twice the area under
the curve in Fig. 2–4. Any numerical or graphical integration scheme should give the
value of the area under the curve. In particular, the trapezoidal rule can be used to
numerically or graphically evaluate the integral in Eq. (13).

The wake survey method cannot be used to measure the drag of stalled airfoils
(high angle of attack) or of airfoils with flaps extended. Under these conditions, a
large part of the drag is caused by rotational losses and does not appear as a change
in linear momentum.

Surface Pressure Distribution on a Two Dimensional Wing

If the pressure distribution is known at all points along the surface of an airfoil,

28           29          30          31         32          33          34         35          36          37         38          39          40        Tube #

d(y/c)

y
c

y/c

Figure 2–4. Integrand of drag integral of Eq. (13).
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Experiment II — Two Dimensional Wing Pressure Distribution and Wake Survey 7

whether determined from actual measurements or from potential flow theory, an in-
tegration can be performed to calculate the overall pressure force on the body. It
is convenient to determine components of this force in the chordwise and normal
direction. From Fig. 2–5 we have

L = N cosα − C sinα (14)

D = N sinα + C cosα (15)

where N, C, L, and D are the normal, chordwise, lift and drag forces, respectively and
α is the two dimensional geometric angle of attack. Nondimensionalizing these forces
by the freestream dynamic pressure, q∞, and the wing planform area, S, Eqs. (14)
and (15) yield in coefficient form

Cl = Cn cosα − Cc sinα (16)

Cd = Cn sinα + Cc cosα (17)

At small angles of attack the chordwise force coefficient, Cc, is very small compared
to the normal force coefficient, Cn; and because sinα is much smaller than cosα, the
cumulative order of magnitude of the product Cc sinα is much smaller than Cn cosα.
Hence, we neglect the Cc sinα term and Eq. (16) reduces to

Cl = Cncosα (18)

However, both terms on the right hand side of Eq. (17) are of the same order of
magnitude and must be retained. Note that the drag coefficient, Cd, in Eq. (17) is
due only to surface pressure distribution and does not include the skin friction drag.

In order to determine the normal and chordwise force coefficients, we consider
the effect of pressure on the upper and lower surfaces of elemental areas at the same
chordwise location on the airfoil, as shown in Fig. 2–6. In Fig. 2–6 the x- and y-
axes are the chordwise and normal directions of the pressure forces and b is the

D
C

V

N RL

Chord line

Figure 2–5. Forces on an airfoil.
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Figure 2–6. Elemental forces on the upper and lower surface of an airfoil.

wing span. The upper and lower surfaces are referred to by the subscripts u and L,
respectively. dFu and dFL are the elemental upper and lower pressure forces acting
on elemental areas bdsu and bdsL, respectively, su and sL are the upper and lower
curvilinear coordinates of a point on the airfoil surface at the same x location. Both
are measured from the leading edge of the airfoil. The chordwise elemental pressure
force, dFx, is the sum of both upper and lower chordwise elemental pressure forces at
the same x location, i.e.

dFx = pu(bdsu) sin θu + pL(bdsL) sin θL (19)

But dyu = dsu sin θu dyL = dsL sin θL (20a, b)

which are the x projections of dsu and dsL along the y-axis. θu and θL are the angles
of the slopes of dsu and dsL, which in general are not equal. However, for symmetric
airfoils, dsu = dsL and θu = θL so that dyu = dyL. For nonsymmetric airfoils with
small camber, dyu ≈ dyL. Under these conditions, Eqs. (19) and (20) yield

dFx = b(pL + pu)dy (21)

where dy = dyu = dyL. Similarly, the normal elemental pressure force dFy can be
expressed as

dFy = −pu(bdsu) cos θu + pL(bdsL) cos θL (22)

or dFy = b(pL − pu)dx (23)

where dx = dsu cos θu = dsL cos θL (24)

The relations in Eq. (24) are exact regardless of symmetry. Introducing the nondi-
mensional pressure coefficient

Cp ≡ p− p∞
q∞

(25)
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Experiment II — Two Dimensional Wing Pressure Distribution and Wake Survey 9

and integrating the forward (FWD) and aft (AFT) chordwise pressure forces with
respect to the position of the maximum thickness of the airfoil, we obtain

Fx = b
∫ y

max

0
(pL + pu)

FWD
dy + b

∫ 0

y
max

(pL + pu)
AFT

dy

= bq∞
∫ y

max

0

[
pL − p∞
q∞

+
pu − p∞
q∞

+
2p∞
q∞

]
FWD

dy

− bq∞
∫ y

max

0

[
pL − p∞
q∞

+
pup∞
q∞

+
2p∞
q∞

]
AFT

dy

= bq∞
∫ y

max

0

(
CpL + Cpu +

2p∞
q∞

)
FWD

dy − bq∞
∫ y

max

0

(
CpL + Cpu +

2p∞
q∞

)
AFT

dy

= bq∞
∫ y

max

0

[(
CpL + Cpu

)
FWD

−
(
CpL + Cpu

)
AFT

]
dy (26)

where the third terms in the integrands cancel because they are equal and constant.
y

max
is the maximum ordinate of the upper surface of the airfoil. It is equal to the

half of the maximum thickness of a symmetric airfoil.
The chordwise force coefficient for a rectangular wing is

Cc =
Fx

q∞S
=

Fx

q∞bc
=

∫ t
max

0

[(
CpL + Cpu

)
FWD

−
(
CpL + Cpu

)
AFT

]
d
(y

c

)
(27)

where t
max
= y

max/c is half the maximum thickness ratio of the airfoil.
Similarly, integrating the normal pressure forces we obtain

Fy =b
∫ c

0
(pL − pu)dx = q∞b

∫ c

0

(
pL − p∞

q∞
− pu − p∞

q∞

)
dx

=q∞b
∫ c

0
(CpL − Cpu)dx (28)

The normal force coefficient for the special case of a rectangular wing is then

Cn =
Fy

q∞S
=

Fy

q∞bc
=

∫ 1

0
(CpL − Cpu)d

(
x

c

)
(29)

The integral of Eq. (29) represents the area between the pressure coefficient curves
as shown in Fig. 2–7. Positive contributions occur when lower surface pressures are
more positive than upper surface pressures.

Thus, to determine the normal force coefficient, local pressure coefficients are
plotted perpendicularly to the chord line at the local yc location (see also Fig. 2–8b).

To determine the chordwise force coefficient of Eq. (27), Cp values are plotted
parallel to the chord line at the local y/c location (Fig. 2–8c). The chordwise coef-
ficient is positive when forward pressures are greater than aft pressures. Note that
the chordwise force is due solely to surface pressure distribution and does not include
skin friction forces. Therefore, we use the wake survey analysis to experimentally
determine the sectional profile drag coefficient which includes the skin friction drag.
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Figure 2–7. Typical Cp distribution on the upper and lower surface.

Figure 2–8. The actual pressure distribution and its presentation.
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Figure 2–9. Growth of the static pressure distribution with angle of attack.

The growth of the pressure distribution with increasing angle of attack for a
typical airfoil is shown in Fig. 2–9.

In addition to lift and drag coefficients, the pitching moment about some arbitrary
point on the airfoil can be determined from the pressure distribution. Taking moments
about the leading edge and converting to coefficient form yields

Cm =
m(0)

q∞xc
=

∫ 1

0
(Cpu − CpL)

(
x

c

)
d
(

x

c

)
+

∫ 1

0
(Cpu + CpL)

(
y

c

)
d
(

y

c

)
(30)

which is taken to be positive when the nose, i.e., the leading edge, pitches upward.
The moment about any other point x/c = h is obtained from

Cm(h) = Cm(c) + hCn (31)

where the small angle assumption has been made in order to neglect the Cc contri-
bution. The integrals in Eq. (30) may be evaluated from the area under curves of
(Cpu − CpL)(

x/c)d(x/c) and (Cpu + CpL)(
y/c)d(y/c)

V. Physical Set-up

A symmetrical NACA 63-012 airfoil with a 12 inch chord is vertically mounted in the
test section of the wind tunnel. Forty (40) pressure taps are symmetrically arranged
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12 Experiment II — Two Dimensional Wing Pressure Distribution and Wake Survey

at the center of the span. The pressure taps are flush with the surface. Pressure
measurements are recorded digitally with a scani-valve. The airfoil can be rotated
about a vertical axis.

A wake rake containing pitot tubes is mounted one chord length behind the airfoil.
Two static pressure tubes are mounted at the extremes of the rake and approximately
one inch above and below the plane of the rake. Note that the wake rake aft of the
wing does not affect the results upstream.

VI. Procedure

1. Make the usual measurements of barometric pressure and temperature.

2. Stabilize the wind tunnel at an inclined manometer reading of 8 inches alcohol.

3. Set the angle of attack at zero, α = 0, then note the tare reading to see whether
the upstream flow is indeed approaching the airfoil at zero degrees or at a slight
angle. To determine the true zero angle of attack of the symmetrical airfoil at
a given tunnel speed, adjust the angle of attack until the pressure distribution
appears symmetrical, i.e., the top and bottom pressures are equal at the same
chordwise location.

4. Vary the angle of attack from −6◦ to stall in two degree increments. Record
the following data for each run:

a. Freestream static pressure.

b. Surface static pressure distribution on the airfoil.

c. The total pressure distribution across the wake.

d. The temperature at the end of each run.

VII. Results Required

1. A scaled drawing of the NACA wing section showing the location of all pressure
taps.

2. Evaluate and plot the experimental distributions of Cp vs x/c at each angle of
attack.

3. Compare the plots for the experimental and NACA 63-012 Cp distributions vs
x/c at zero angle of attack.

4. Calculate and plot the sectional lift coefficient, Cl and the form drag coefficient
Cd vs angle of attack. Compare the experimental results to those for an NACA
63-012 airfoil as give in Theory of Wing Sections. Explain any differences.

5. For each angle of attack plot
√

q2/q∞ − q2/q∞ vs y/c and evaluate the profile
drag coefficient Cd0.

6. Plot Cd0
and Cdf

, the skin friction drag coefficient vs angle of attack.

7. Compare the experimental and NACA results for Cd0 vs α. Note that because
the NACA data in Theory of Wing Sections is given for different Reynolds
numbers and the experimental data must be compared at the same Reynolds
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number, it may be necessary to apply the following empirical formula applicable
only to Cd0

Cd01
= Cd02

(
Re2
Re1

)0.11

(31)

where Cd02
is the experimental profile drag coefficient at Re2, and Cd01

is the
scaled value of Cd02

at the Reynolds number Re1 of the NACA data.

Pressure Tap Locations for the NACA 63-012 Wing Section

Top Surface Bottom Surface
Tap % x/c % y/c Tap % x/c % y/c

1 0.00 0.0
2 0.40 1.1 3 0.5 1.2
4 1.08 1.5 5 1.0 1.5
6 1.80 2.0 7 2.0 2.0
8 2.80 2.4 9 3.0 2.4
10 3.70 2.7 11 4.0 2.8
12 4.90 3.1 13 5.0 3.1
14 10.00 4.2 15 10.0 4.1
16 14.80 4.8 17 1.5 4.6
18 20.00 5.4 19 20.0 5.4
20 25.90 5.5 21 25.0 5.8
22 29.90 5.9 23 30.0 5.9
24 34.90 6.0 25 35.0 6.1
26 39.90 5.9 27 40.0 6.0
28 49.60 5.4 29 50.0 5.4
30 59.60 4.4 31 60.0 4.5
32 69.50 3.2 33 70.0 3.3
34 79.50 1.9 35 80.0 1.9
36 89.50 0.7 37 90.0 0.8
38 94.40 0.3 39 95.0 0.4

40 100 0.0

VIII. Homework Assignment

An airfoil with a 6 inch chord is mounted in the USNA recirculating wind tunnel. A
wake rake is mounted one chord length behind the airfoil. The rake has both pitot
and static pressure tubes for freestream reference and 8 pitot tubes that measure the
wake momentum deficit via total pressures. The rake is attached to an alcohol (s.g.
= 0.806) manometer board.

Manometer tubes #1 and #2 are attached to the static and total head ports,
respectively, while tubes #3 through #10 are pitot tubes spanning the wake. Lab-
oratory conditions are Patm = 30.03 inHg and T = 75◦F. The tunnel temperatures
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were 75◦ and 95◦ at the beginning and end of the test run, respectively. The readings
on the manometer board are listed below:

Tube h(in)

1 6.00
2 0.00
3 2.08
4 3.69
5 4.88
6 5.00
7 4.87
8 3.70
9 2.10
10 0.01

Assume the space between the tubes is uniform and equal to the a tenth of the chord
length.

1. Tabulate and plot the function
√

q2/q∞ − q2/q∞ vs y/c for the wake.

2. Calculate the profile drag coefficient of the airfoil using the trapezoidal rule.
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EA303 WIND TUNNEL

EXPERIMENT II

TWO DIMENSIONAL

WING PRESSURE DISTRIBUTION AND WAKE SURVEY

Pressure Tap Setup

The pressure taps on the airfoil are lead to a multiple manometer and also through
a scanning valve to a pressure transducer. The values from the pressure transducer are
read by a digital data acquisition system (computer). The correspondence between
the pressure ports and the individual tubes of the multimanometer as well as the
numbering system for the digital data acquisition system are shown in Fig. 2–10

Outside Numbers = to Manometer
Inside Numbers    = Computer Print Out

1 30

7
5

2

3

4

9 11 13 15 17 19 21 23 25

25

27

27 29
29

4
213

5 7 9 11 13 15 17 19 21 23
31 33 35 37 39 4038363432302826242220

22 24
26

28

20

6

6

8

810

1012

12

14

14

16

16

18

18

Airfoil

Figure 2–10. Airfoil pressure numbering system.

Similarly the pitot and static pressure tubes in the wake rake are connected to
both a multimanometer and to the digital data acquisition system. The numbering
system is shown in Fig. 2–11.

Top Numbers - Computer Print Out

Bottom Numbers Hooked to Incline Manometer
1

2 28
29

41 42 95 96

Center
6968 70 74

27

92
93

9450

3

43 45
44

RAKE

(1-29)

Figure 2–11. Wake rake pressure numbering system.
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